On conserve la valeur d’une fraction lorsqu’on multiplie le numérateur et le dénominateur par le même nombre : \(\displaystyle \frac{a}{b}=\frac{a \times k}{b \times k} \)
Pour ajouter deux fractions, on les réduit au même dénominateur (à l’aide de la propriété précédente).
Pour les multiplier, on multiplie les numérateurs entre eux et les dénominateurs entre eux : \(\displaystyle \frac{a}{b} \times \frac{c}{d}=\frac{a \times c}{b \times d} \)
Quizz
Puissances
Propriétés
Pour tous nombres \(a,b,m,n\) :
\(a^m \times a^n=a^{m+n}\)
\(\displaystyle \frac{a^m}{a^n}=a^{m-n}\)
\(\displaystyle \left(a^m\right)^n=a^{m \times n}\)
Quizz
Racines carrées
Définition
La racine carrée d’un nombre positif \(a\) est le nombre positif dont le carré vaut \(a\)
Propriétés :
Si \(a\) est positif : \(\sqrt{a}^2=a\)
Pour n’importe quel nombre \(a\) : \(\sqrt{a^2}=\mid a \mid \) (NB : \(\mid a \mid\) est la valeur absolue de \(a\), c’est à dire le nombre positif qui a la même partie numérique que \(a\) )
Propriétés :
Pour tous nombres \(a\) et \(b\) :
\(\sqrt{a\times b}=\sqrt{a} \times \sqrt{b}\)
En particulier :
\(\sqrt{a^2\times b}=a \times \sqrt{b}\)
(même propriété pour la division)
Attention : c’est faux pour l’addition (prendre par exemple \(a=1\) et \(b=1\) )
Quizz
Arithmétique
Définitions
Pour \(a,b,c\) trois entiers naturels, dans la relation \(a=b \times c\) :
\(a\) est un multiple de \(b\) et de \(c\)
\(b\) et \(c\) sont des diviseurs de \(a\)
Définitions
Un nombre qui admet exactement deux diviseurs : 1 et lui-même est appelé un nombre premier
Propriété
Le nombre 1 n’est pas un nombre premier